233 research outputs found

    Patterns of brain asymmetry associated with polygenic risks for autism and schizophrenia implicate language and executive functions but not brain masculinization

    Get PDF
    Autism spectrum disorder (ASD) and schizophrenia have been conceived as partly opposing disorders in terms of systemizing versus empathizing cognitive styles, with resemblances to male versus female average sex differences. Left-right asymmetry of the brain is an important aspect of its organization that shows average differences between the sexes, and can be altered in both ASD and schizophrenia. Here we mapped multivariate associations of polygenic risk scores for ASD and schizophrenia with asymmetries of regional cerebral cortical surface area, thickness and subcortical volume measures in 32,256 participants from the UK Biobank. Polygenic risks for the two disorders were positively correlated (r=0.08, p=7.13×10-50), and both were higher in females compared to males, consistent with biased participation against higher-risk males. Each polygenic risk score was associated with multivariate brain asymmetry after adjusting for sex, ASD r=0.03, p=2.17×10-9, schizophrenia r=0.04, p=2.61×10-11, but the multivariate patterns were mostly distinct for the two polygenic risks, and neither resembled average sex differences. Annotation based on meta-analyzed functional imaging data showed that both polygenic risks were associated with asymmetries of regions important for language and executive functions, consistent with behavioural associations that arose in phenome-wide association analysis. Overall, the results indicate that distinct patterns of subtly altered brain asymmetry may be functionally relevant manifestations of polygenic risks for ASD and schizophrenia, but do not support brain masculinization or feminization in their etiologies

    Genetic architecture of the white matter connectome of the human brain

    Get PDF
    White matter tracts form the structural basis of large-scale functional networks in the human brain. We applied brain-wide tractography to diffusion images from 30,810 adult participants (UK Biobank), and found significant heritability for 90 regional connectivity measures and 851 tract-wise connectivity measures. Multivariate genome- wide association analyses identified 355 independently associated lead SNPs across the genome, of which 77% had not been previously associated with human brain metrics. Enrichment analyses implicated neurodevelopmental processes including neurogenesis, neural differentiation, neural migration, neural projection guidance, and axon development, as well as prenatal brain expression especially in stem cells, astrocytes, microglia and neurons. We used the multivariate association profiles of lead SNPs to identify 26 genomic loci implicated in structural connectivity between core regions of the left-hemisphere language network, and also identified 6 loci associated with hemispheric left-right asymmetry of structural connectivity. Polygenic scores for schizophrenia, bipolar disorder, autism spectrum disorder, attention-deficit hyperactivity disorder, left-handedness, Alzheimer’s disease, amyotrophic lateral sclerosis, and epilepsy showed significant multivariate associations with structural connectivity, each implicating distinct sets of brain regions with trait-relevant functional profiles. This large-scale mapping study revealed common genetic contributions to the structural connectome of the human brain in the general adult population, highlighting links with polygenic disposition to brain disorders and behavioural traits

    Using neuroimaging genomics to investigate the evolution of human brain structure

    Get PDF
    Alterations in brain size and organization represent some of the most distinctive changes in the emergence of our species. Yet, there is limited understanding of how genetic factors contributed to altered neuroanatomy during human evolution. Here, we analyze neuroimaging and genetic data from up to 30,000 people in the UK Biobank and integrate with genomic annotations for different aspects of human evolution, including those based on ancient DNA and comparative genomics. We show that previously reported signals of recent polygenic selection for cortical anatomy are not replicable in a more ancestrally homogeneous sample. We then investigate relationships between evolutionary annotations and common genetic variants shaping cortical surface area and white-matter connectivity for each hemisphere. Our analyses identify single-nucleotide polymorphism heritability enrichment in human-gained regulatory elements that are active in early brain development, affecting surface areas of several parts of the cortex, including left-hemispheric speech-associated regions. We also detect heritability depletion in genomic regions with Neanderthal ancestry for connectivity of the uncinate fasciculus; this is a white-matter tract involved in memory, language, and socioemotional processing with relevance to neuropsychiatric disorders. Finally, we show that common genetic loci associated with left-hemispheric pars triangularis surface area overlap with a human-gained enhancer and affect regulation of ZIC4, a gene implicated in neurogenesis. This work demonstrates how genomic investigations of present-day neuroanatomical variation can help shed light on the complexities of our evolutionary past

    Constitutive serotonin transporter reduction resembles maternal separation with regard to stress-related gene expression

    Get PDF
    Interactive effects between allelic variants of the serotonin transporter (5-HTT) promoter-linked polymorphic region (5-HTTLPR) and stressors on depression symptoms have been documented, as well as questioned, by meta-analyses. Translational models of constitutive 5-htt reduction and experimentally controlled stressors often led to inconsistent behavioral and molecular findings, and often did not include females. The present study sought to investigate the effect of 5-htt genotype, maternal separation, and sex on the expression of stress-related candidate genes in the rat hippocampus and frontal cortex. The mRNA expression levels of Avp, Pomc, Crh, Crhbp, Crhr1, Bdnf, Ntrk2, Maoa, Maob, and Comt were assessed in the hippocampus and frontal cortex of 5-htt +/- and 5-htt +/+ male and female adult rats exposed, or not, to daily maternal separation for 180 minutes during the first two postnatal weeks. Gene- and brain region-dependent, but sex-independent, interactions between 5-htt genotype and maternal separation were found. Gene expression levels were higher in 5-htt +/+ rats not exposed to maternal separation compared to the other experimental groups. Maternal separation and 5-htt +/- genotype did not yield additive effects on gene expression. Correlative relationships, mainly positive, were observed within, but not across, brain regions in all groups, except in non-maternally separated 5-htt +/+ rats. Gene expression patterns in the hippocampus and frontal cortex of rats exposed to maternal separation resembled the ones observed in rats with reduced 5-htt expression, regardless of sex. These results suggest that floor effects of 5-htt reduction and maternal separation might explain inconsistent findings in humans and rodents.</p

    Augmented versus Virtual Reality Laparoscopic Simulation: What Is the Difference?: A Comparison of the ProMIS Augmented Reality Laparoscopic Simulator versus LapSim Virtual Reality Laparoscopic Simulator

    Get PDF
    BACKGROUND: Virtual reality (VR) is an emerging new modality for laparoscopic skills training; however, most simulators lack realistic haptic feedback. Augmented reality (AR) is a new laparoscopic simulation system offering a combination of physical objects and VR simulation. Laparoscopic instruments are used within an hybrid mannequin on tissue or objects while using video tracking. This study was designed to assess the difference in realism, haptic feedback, and didactic value between AR and VR laparoscopic simulation. METHODS: The ProMIS AR and LapSim VR simulators were used in this study. The participants performed a basic skills task and a suturing task on both simulators, after which they filled out a questionnaire about their demographics and their opinion of both simulators scored on a 5-point Likert scale. The participants were allotted to 3 groups depending on their experience: experts, intermediates and novices. Significant differences were calculated with the paired t-test. RESULTS: There was general consensus in all groups that the ProMIS AR laparoscopic simulator is more realistic than the LapSim VR laparoscopic simulator in both the basic skills task (mean 4.22 resp. 2.18, P <0.000) as well as the suturing task (mean 4.15 resp. 1.85, P <0.000). The ProMIS is regarded as having better haptic feedback (mean 3.92 resp. 1.92, P <0.000) and as being more useful for training surgical residents (mean 4.51 resp. 2.94, P <0.000). CONCLUSIONS: In comparison with the VR simulator, the AR laparoscopic simulator was regarded by all participants as a better simulator for laparoscopic skills training on all tested feature

    Perceptions of surgical specialists in general surgery, orthopaedic surgery, urology and gynaecology on teaching endoscopic surgery in The Netherlands

    Get PDF
    BACKGROUND: Specific training in endoscopic skills and procedures has become a necessity for profession with embedded endoscopic techniques in their surgical palette. Previous research indicates endoscopic skills training to be inadequate, both from subjective (resident interviews) and objective (skills measurement) viewpoint. Surprisingly, possible shortcomings in endoscopic resident education have never been measured from the perspective of those individuals responsible for resident training, e.g. the program directors. Therefore, a nation-wide survey was conducted to inventory current endoscopic training initiatives and its possible shortcomings among all program directors of the surgical specialties in the Netherlands. METHODS: Program directors for general surgery, orthopaedic surgery, gynaecology and urology were surveyed using a validated 25-item questionnaire. RESULTS: A total of 113 program directors responded (79%). The respective response percentages were 73.6% for general surgeons, 75% for orthopaedic surgeon, 90.9% for urologists and 68.2% for gynaecologists. According to the findings, 35% of general surgeons were concerned about whether residents are properly skilled endoscopically upon completion of training. Among the respondents, 34.6% were unaware of endoscopic training initiatives. The general and orthopaedic surgeons who were aware of these initiatives estimated the number of training hours to be satisfactory, whereas the urologists and gynaecologists estimated training time to be unsatisfactory. Type and duration of endoscopic skill training appears to be heterogeneous, both within and between the specialties. Program directors all perceive virtual reality simulation to be a highly effective training method, and a multimodality training approach to be key. Respondents agree that endoscopic skills education should ideally be coordinated according to national consensus and guidelines. CONCLUSIONS: A delicate balance exists between training hours and clinical working hours during residency. Primarily, a re-allocation of available training hours, aimed at core-endoscopic basic and advanced procedures, tailored to the needs of the resident and his or her phase of training is in place. The professions need to define which basic and advanced endoscopic procedures are to be trained, by whom, and by what outcome standards. According to the majority of program directors, virtual reality (VR) training needs to be integrated in procedural endoscopic training course

    Will the Playstation generation become better endoscopic surgeons?

    Get PDF
    A frequently heard comment is that the current "Playstation generation" will have superior baseline psychomotor skills. However, research has provided inconsistent results on this matter. The purpose of this study was to investigate whether the "Playstation generation" shows superior baseline psychomotor skills for endoscopic surgery on a virtual reality simulator. The 46 study participants were interns (mean age 24 years) of the department of surgery and schoolchildren (mean age 12.5 years) of the first year of a secondary school. Participants were divided into four groups: 10 interns with videogame experience and 10 without, 13 schoolchildren with videogame experience and 13 without. They performed four tasks twice on a virtual reality simulator for basic endoscopic skills. The one-way analysis of variance (ANOVA) with post hoc test Tukey-Bonferroni and the independent Student's t test were used to determine differences in mean scores. Interns with videogame experience scored significantly higher on total score (93 vs. 74.5; p=0.014) compared with interns without this experience. There was a nonsignificant difference in mean total scores between the group of schoolchildren with and those without videogame experience (61.69 vs. 55.46; p=0.411). The same accounts for interns with regard to mean scores on efficiency (50.7 vs. 38.9; p=0.011) and speed (18.8 vs. 14.3; p=0.023). In the group of schoolchildren, there was no statistical difference for efficiency (32.69 vs. 27.31; p=0.218) or speed (13.92 vs. 13.15; p=0.54). The scores concerning precision parameters did not differ for interns (23.5 vs. 21.3; p=0.79) or for schoolchildren (mean 15.08 vs. 15; p=0.979). Our study results did not predict an advantage of videogame experience in children with regard to superior psychomotor skills for endoscopic surgery. However, at adult age, a difference in favor of gaming is present. The next generation of surgeons might benefit from videogame experience during their childhoo
    corecore